
A MULTI-VEHICLE COOPERATIVE
LOCALIZATION APPROACH FOR AN

AUTONOMY FRAMEWORK

THESIS

Edwin A. Mora, Second Lieutenant, USAF

AFIT/ENG/19M

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.



The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Air Force, the United States Department
of Defense or the United States Government. This material is declared a work of the
U.S. Government and is not subject to copyright protection in the United States.



AFIT/ENG/19M

A MULTI-VEHICLE COOPERATIVE LOCALIZATION APPROACH FOR AN

AUTONOMY FRAMEWORK

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Electrical Engineering

Edwin A. Mora, B.S.E.E.

Second Lieutenant, USAF

March 21, 2019

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.



AFIT/ENG/19M

A MULTI-VEHICLE COOPERATIVE LOCALIZATION APPROACH FOR AN

AUTONOMY FRAMEWORK

THESIS

Edwin A. Mora, B.S.E.E.
Second Lieutenant, USAF

Committee Membership:

Dr. Robert C. Leishman
Chair

Dr. John Raquet
Member

Dr. David R. Jacques
Member



AFIT/ENG/19M

Abstract

Offensive techniques produced by technological advancement present opportunities

for adversaries to threaten the operational advantages of our joint and allied forces.

Combating these new methodologies requires continuous and rapid development to-

wards our own set of “game-changing” technologies. Through focused development

of unmanned systems and autonomy, the Air Force can strive to maintain its techno-

logical superiority. Furthermore, creating a robust framework capable of testing and

evaluating the principles that define autonomy allows for the exploration of future

capabilities. This research presents development towards a hybrid reactive/delibera-

tive architecture that will allow for the testing of the principles of task, cognitive, and

peer flexibility. Specifically, this work explores peer flexibility in multi-robot systems

to solve a localization problem using the Hybrid Architecture for Multiple Robots

(HAMR) as a basis for the framework. To achieve this task a combination of vehicle

perception and navigation tools formulate inferences on an operating environment.

These inferences are then used for the construction of Factor Graphs upon which the

core algorithm for localization implements iSAM2, a high performing incremental ma-

trix factorization method. A key component for individual vehicle control within the

framework is the Unified Behavior Framework (UBF), a behavior-based control ar-

chitecture which uses modular arbitration techniques to generate actions that enable

actuator control. Additionally, compartmentalization of a World Model is explored

through the use of containers to minimize communication overhead and streamline

state information. The design for this platform takes on a polymorphic approach for

modularity and robustness enabling future development.
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A MULTI-VEHICLE COOPERATIVE LOCALIZATION APPROACH FOR AN

AUTONOMY FRAMEWORK

I. Introduction

1.1 Document Overview

This document provides insight on the research and development made towards an

autonomy framework platform. The intent behind this platform’s creation is to pro-

vide researchers with a robust and capable test-bed for the development of autonomy

capabilities. A Behavior-based Hybrid Deliberative/Reactive Architecture approach

was the basis of this framework’s initial design. Included in the framework are key

components that follow a traditional three-layer architecture with modifications made

primarily for abstracting the responsibilities of multi-vehicle management in mobile

ad-hoc networks. Additionally, alternate approaches for state management are ex-

plored for the sake of streamlining a robust World Model. The framework developed

is then tested for functionality through its implementation on a Cooperative Local-

ization task. The algorithm for this task features a Factor Graph approach which

uses trees to establish relationships between measurements and history by making

inferences on the graph’s representation of this data.

The organizational structure for this document begins with this chapter in which

the motivational factors behind this research and creation for this framework are dis-

cussed. In addition, Chapter 1 also presents the objectives and desired features in the

proposed framework, as well as the assumptions made. In Chapter 2, the fundamen-

tals of pre-existing frameworks are presented with the intent of providing conceptual
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insight on framework design. Additionally, background information on other integral

components in this applied framework such as middleware and filter approaches for

cooperative localization are expressed. Chapter 3 presents the methodology used in

the construction of this iteration for the framework. Included in this are the compo-

nents of the proposed architecture, as well as the specific algorithms used in place for

the Cooperative Localization method. Chapter 4 describes the framework’s perfor-

mance on how it handles the designated task with dynamic operating environment

conditions. Also included are the results and analysis generated from the cooperative

localization algorithm. This document concludes with a discussion in Chapter 5 on

the data collected from the algorithm. Additionally, the considerations made for this

framework’s iteration are addressed in the chapter to provide guidance on the further

developments needed for full test-bed functionality.

1.2 Research Motivation

Within the last two decades the effects of rapid technological changes have become

more evident [1]. This concept of change has quickly become a cultural norm and

expectation in the years to come. In America’s Air Force: A Call to the Future this

new norm is said to come with serious implications for the Air Force due to its effect

on our operational advantages. These continuously emerging technologies produce

new disruptive techniques usable by our adversaries which in hand shorten the lifes-

pan of our advantages. Through strategic agility, the Strategic Vectors for the Future,

and a 30-year plan we hope to address these implications and remove this threat [1].

Of these vectors for the future, one addresses this vulnerability through the contin-

uous pursuit of our own “game changing” technologies. This strategy relies on the

development towards advances that amplify the speed, range, flexibility and precision

attributes of air power [1]. Two technologies that fall within this spectrum are that

2



of Unmanned Systems and Autonomy [1]. Development in these areas according to

the proposed 30-year plan focus on the extension of our capabilities through the use

of such systems in order to protect our airmen. This means less airmen in physical

danger while simultaneously increasing our operational capabilities through remote

collaboration with our unmanned and autonomous assets. To accomplish this col-

laboration effectively Autonomous Horizons: System Autonomy in the Air Force - A

Path to the Future stresses the importance of a flexible autonomy, which is one where

depending on the situation, will shift anywhere between operating under fully man-

ual and full autonomy [2]. By definition, to operate under full autonomy a system

must exhibit the following three principles: task, peer, and cognitive flexibility [3].

Unfortunately, there is yet to exist a platform that fully meets these performance re-

quirements due to each of the varying frameworks and approaches up to present-day

falling short. To aid in implementation of the 30-year plan, a robust framework that

can evaluate autonomy capabilities is desirable for allowing the Air Force to explore

autonomy in UAVs [3].

1.3 Research Objectives

The aim for this research is to contribute towards a sufficiently robust platform

to assist in the development of different autonomies. The developed platform is

intended to be used for the testing and evaluation of these new autonomies with

respect to the three principles of task, peer, and cognitive flexibility. Specifically, the

development discussed in this document focuses primarily on evaluating the principle

of peer flexibility through the use of cooperative localization. The long term design

goal for the framework revolves around the following criteria [3]:

• Well-defined and abstract software elements (components) that require little to

no modifications from one evaluation to the next

3



• Interoperability between these software elements (components)

• Communication capabilities between vehicle-to-vehicle as well as human-to-

vehicle

• Exhibition of task, peer, and cognitive flexibilty

1.4 Assumptions and Constraints

This document presents the work done that contributes to the long term goal

of providing a fully functional testing platform. To reduce the scope and begin the

development some assumptions and constraints needed to be made. In the proposed

design there exists multiple components with intricate responsibilities. Furthermore,

these components operate using large amounts of information passed throughout the

framework. Below are some broad assumptions for the framework and the information

shared within:

• All measurements and state information transmitted are characterized by nor-

mal distributions with a mean value and covariance

• The time between spatial relative observations of vehicles and transmittance to

other team vehicles is assumed to be in real-time, and therefore negligible

• Bearing measurements are with respect to the vehicle frame

• Heading measurements are with respect to North

To establish a pattern of inheritance for future iterations some assumptions as to how

this information is received impacts some of the design choices behind each compo-

nent. For rapid development purposes, the framework was designed using MATLAB’s

Object Oriented environment in which the class definitions for each component drew

4



from some basic principles from Object Oriented programming. Because of this, some

methods used within each Class needed to be modified to handle matlab argument

passing. Further assumptions and constraints related to the experiment are discussed

in Chapter 3.

5



II. Background

In this chapter, an overview of fundamental concepts necessary for understanding

the functions and implementation of this Autonomy Framework is provided. Addi-

tionally, included are the literature relevant to the encompassed topics within this

research area. This chapter is organized in the following manner. In Section 2.1 the

inner workings and general function for a software framework are explored. Some

common approaches for framework design are presented along with their strengths

and weaknesses with the intent to provide contrast for this work’s taken approach.

Section 2.2 examines communication frameworks and their necessity in middleware

applications. Some commonly used and standard frameworks are included. Lastly,

Section 2.3 introduces the concept of Cooperative Localization; the proposed mission

application for testing of peer flexibility on this platform.

2.1 Robotic Frameworks

When it comes to accomplishing tasks, depending on the task at hand, humans can

quickly derive solutions. Whether it comes from experience or cognitive ability, the

human brain can process the environment around it and come up with an adequate

solution. The intricate workings and anatomy of the human brain allows for this

parallel processing of environmental information and actuator control. For a robot to

accomplish the same task that an intelligent being with a brain is presented with, a

collection of tools and modules are necessary. This collection of building blocks are

what constitutes a Robotic Framework or Robotic Software Framework (RSF). This

definition for a Robotic Framework is not to be confused with Robotic Middleware

as there is an important distinction. When it comes to Middleware it is important

to think of it as the glue that holds these modules together. In essence, it is the

6



communication infrastructure that connects the different parts of the framework and

allows them to function together [4]. In the following subsections some of the more

widely accepted Robotic Paradigms, or architecture design patterns, are explored

in brief detail. Additionally, some expansion is provided on the control techniques,

or arbitration methods, for action generation that some of these design patterns

implement.

2.1.1 Deliberative Architectures.

The deliberative approach to framework design represents a top-down philoso-

phy in which there exists a hierarchy of steps for robotic fuctions. This method is

the oldest out of all design patterns and was the focus of Artificial Intelligence Re-

search for over thirty years until about the mid 1980’s [5]. Some common aliases for

this approach are the Hierachical [6] and the more commonly known Sense-Plan-Act

(SPA)[5] architectures. In short, this design pattern is autological. The SPA approach

represents a methodology in which the system uses sensors to model the environment,

creating a World Model, algorithms in place generate plans for the robot and then

execute relevant actions. This architecture was first demonstrated by the Artificial

Intelligence Center (SRI International), through Shakey the Robot [7].

Figure 1. Deliberative Architecture Decomposition [8]

Some issues arise with the SPA approach. For one, the architecture’s design

depends on an accurate World Model to plan a relevant action/action-set for the

system to execute. This causes problems for even relatively simple tasks due to the

unrealistic expectation of a static operating environment. Dynamic environments

would require the robot to more frequently update the model for the plan and act

7



phase to be of more relevance. This can eat up resources and, depending on the level

of sophistication in the features of the system, and can also lead to an increase in

the number of sensors required for a sufficient World Model. This added complexity

increases the latency in the Sense phase of the architecture. This was observed in

the implementation on Shakey the Robot. Of even more consequence is the fact that,

the system is unresponsive to its environment during the Plan and Act phases [9],

meaning that any changes in the surroundings would not be taken into consideration

during each of these phases respectively. The combination of these shortcomings

“results in sub-par performance” when it comes to control output [10].

2.1.2 Reactive Architectures.

Due to the shortcomings of the Deliberative approach, a new architecture was

needed. The origin of this new paradigm was credited to Valentino Braitenberg, who,

in the mid-1980’s, presented an architecture that was derived through the inspiration

of living organisms. He proposed that machines/robots should not be viewed from

an engineering perspective but instead through“psychological language” to “describe

their behavior”. The basis of this concept came from Braitenberg’s idea that com-

plex behaviors exhibited by living organisms may be the result of simpler behaviors

[11]. His thoughts were that through this different lens, one could shift focus from

viewing hardware as a realization of an idea to the idea itself. As a result, the Re-

active approach was born [12]. The main benefit from this new approach was that

through the elimination of an internal “World Model” being passed into some sort of

planning layer, actions could be directly coupled to the information coming through

the sensors. This modification to information flow resulted in a reduction to com-

putational latency, thus bringing in the era of reactive architectures. Braitenberg’s

Reactive approach soon led to the inspiration of a number of derivative architectures,
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with each one placing emphasis on certain aspects of the overall concept. Below are

a few of these derived architectures.

Subsumption . The Subsumption architecture was one of the first Reactive

approaches prevalent in the 1980’s [13]. Rodney Brooks, the creator, looked to insects

as inspiration for the design. Through observation he deduced that by organizing the

reactive layer in a “bottom-up” manner, he could aggregate intelligence upwards and

achieve a decrease in computational latency. To do this, he found it necessary for

each sub-layer within this reactive layer to be organized by levels of competence in

which each sub-layer subsumes from the layers under it. Additionally, they were to be

designed for independent and asynchronous application. By extension, the coupling

of sensory information directly to each of these sub-layers dismantles the ”World

Model” into “sub-states” allowing for the simpler layers to generate simple results

[14, 15]. With this design, the higher level and more complex layers (less competent)

within the Reactive layer are capable of “subsuming” the lower (more competent)

sub-layers allowing for more intricate actions to be generated.

Figure 2. Subsumption Architecture Decomposition [16]
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Colony Architecture. Following in the footsteps of Brooks’ subsumption

architecture, Jonathan Connell came up with the Colony Architecture in 1989[17].

Just like its predecessor the Subsumption Architecture emerged as a cooperative styled

approach in which it operated by running on multiple processors/microcontrollers.

Although intently reactive, the Colony Architecture differed from the hierarchical

organizational structure of Subsumption. By design, this architecture consisted of a

colony of smaller and simpler behaviors that worked collectively in parallel to generate

actions. For developmental purposes the parallelization worked well because one could

focus on the design, implementation, and troubleshooting of individual behaviors prior

to moving onto another. Additionally, if features or new behaviors needed to be added

then it was as simple as adding another processor to handle the task. Unfortunately

this compartmentalization of behaviors also meant that if the system suffered from

hardware failure at a given point, an entire group of behaviors could be affected;

rendering the overall system unable to continue functioning. Designing fail-safes or

backup plans becomes naturally more difficult in such conditions. [17]

Motor Schema . Originally theorized by Richard A. Schmidt in 1975 [18],

the Motor Schema theory was proposed as an alternative for the open and closed-

loop psychological theories existing at the time regarding motor skills learning in

an individual. His alternative was modeled around the notion that “recall memory”

should produce movement and “recognition memory” should evaluate the response

correctness [18]. In 1993, Ronald Craig Arkin reified this theory as an architecture in

robotic navigation [19]. In his version of a reactive approach, each sub-layer within

the reactive layer represented a particular simple schema, or behavior, such as “wan-

der” or “avoid objects” [11]. Like in Schmidt’s theory, Arkin’s architecture “recalled

memory” through environmental stimuli with the use of sensors. This was done with-

out the persistent retention of information about the operating environment, with
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the exception of apriori knowledge where needed to stay true to a reactive approach.

Each of the behaviors was designed so that they could generate an action with the

available sensory information. The generated action was in the form of a velocity

vector. This design allowed the actions to be combined through vector summation

and normalization. The Motor Schema approach was, consequentially, not considered

priority-based in regards to arbitration and emerged as one the first “cooperative con-

trol” methods [20]. Like the rest of the reactive approaches, this method suffered from

cyclical behavior and issues with local minima/maxima due to the lack of retention

of world information and deliberation [10, 14].

2.1.3 Early Hybrid Deliberative/Reactive Architectures.

Inspired by previous architectures, some researchers sought new approaches that

would improve upon the shortcomings of both the deliberative and reactive paradigms

as individual architectures. Using the strengths of both the deliberative and reactive

approaches to circumvent their individual weaknesses, hybrid architectures were able

to improve upon what each individual approach could not. The general idea behind

this approach was that by incorporating deliberative and reactive layers in the overall

architecture, one could provide a real-time performance capable of long-term plans.

Circuit Architecture. In her attempt to address problems with traditional

reactive approaches, Leslie P. Kaelbling proposed the Circuit Architecture in 1986

[21]. As seen in Figure 3, the name Circuit Architecture comes from a feedback

methodology in which generated actions from the action component are provided as

feedback to the perception component. One of the main intents behind this architec-

ture was the need for verifying that the generated actions of a reactive architecture

were aligned and relevant to the system’s intended effects. The idea is that without

this verification process on the back-end a system is not truly reactive, hence the need
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for some feedback [21].

Using Brookes’ approach as influence, the architecture was designed with percep-

tual and behavioral robustness. The architecture took advantage of the possibility

for redundant sensory information from multiple sensor types. By integrating the

sensory information from these multiple sources into a structure representing some-

thing similar to a World Model, the perception component aimed to provide sufficient

information to trigger actions in accordance with the quality of available information.

Through the combination of the tick and the feedback coming from the action compo-

nent, the architecture could also provide behavioral robustness. As seen in Figure 3,

the system could validate whether its actions were having their intended effects on the

environment by feeding back information related to the generated actions. This infor-

mation would include but not be limited to: a signal referencing the current inability

to formulate plans, necessary data requiring collection for the completion of higher

level plans, and current operational focus due to survival needs. Kaelbling acknowl-

edged the importance of sensor failure detection and its effect on the integrity of the

generated World Model but did not propose a solution in the Circuit Architecture’s

original design [21].

Figure 3. Circuit Architecture Perception-Action Decomposition [21]
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2.1.4 Centralized and Distributed Architectures.

In the early stages of robotics and autonomy the approaches taken for architec-

ture design relied heavily on the technology available to the developers at that time.

As mentioned above, the deliberative and reactive approaches that emerged focused

primarily on innovation between perception and action with the general end-goal be-

ing to generate the most effective set of actions and execute them [22]. This led

to the layered approaches referred to as the “top-down” and “hierarchical” architec-

tures presented in the previous sections. Unfortunately even with the early stage

hybrid architectures that emerged to circumvent the individual shortcomings of both

deliberative and reactive approaches, they were still generally inhibited by their or-

ganizational structure. In 1997, Jonathan Rosenblatt [22] proposed that instead of

imposing a hierarchical structure to achieve a hybrid architecture, one could use mul-

tiple modules to concurrently share control of the robot and generate actions through

arbitration [22]. This general idea applied to both Centralized and Distributed Ar-

chitectures with the main difference being in the distribution of control and planning

throughout the framework.

D.A.M.N.. Rosenblatt’s first demonstration of a distributed architecture

was in his Distributed Architecture for Mobile Navigation, or DAMN [22]. Like some

previous reactive systems, DAMN was designed as a behavior-based architecture with

its distinction laying in its method for action generation. Unlike the Colony Archi-

tecture, DAMN utilizes an Arbiter module that receives votes from its behaviors and

then uses a Command Fusion arbitration technique, which consists of fusing behavior

outputs to generate a set of commands for the controller that best satisfies the overall

goal of the system [17, 22]. This methodology allows for the consideration of multiple

constraints stemming from each behavior asynchronously.
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Figure 4. Overall structure of DAMN [22]

2.1.5 Arbitration Techniques.

Prior to the development of Centralized and Distributed architectures, each ap-

proach typically was designed with a particular arbitration method in mind. Although

not all approaches actually included an Arbiter module, actions were still generated

through some form of arbitration. When it came to performance, each architecture

generally did well around the design criteria, but the effectiveness did not always hold

true outside of their original scope. The practice of designing architectures around

their design criteria implicates the level of robustness for varying operating conditions

due to lack of compatibility with different arbitration methods. Below are some of

the more popular arbitration methods used, some of which are present in the previous

architectures. Each of these methods follow the standard practice of enabling arbi-

tration through the use of a weighted system for generated actions. The arbitration

techniques then take these actions and their associated weights as inputs to provide

an output consisting of desired states for the controller.

Priority-Based. Also known as the Winner-Take-All (WTA) arbiter, the

Priority-Based arbiter simply returns the action with the highest vote as a command

to the robot controller.
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Vector Summation. Often used in systems with velocity control, the Vector

Summation arbiter takes in the set of outputs from each behavior and their associated

weights. This input into the arbiter then combines the inputs to generate some form

of a weighted sum of actions, which is then fed to relevant/compatible actuators.

Subsumption. This arbiter is used when there exists a set of competency

rules for arbitration within the architecture. The vertical decomposition of behaviors

used in the Subsumption Architecture allows for a system of checks-and-balances in

which certain behaviors can inhibit others based on their competency level. One

such metric for competence can be time of arrival for action recommendation from

behaviors, as seen in an experiment by Taylor Bodin [9]. This set of rules can allow

the arbiter to select or fuse actions based on a first-come-first-serve basis [9].

Command Fusion. As seen in the DAMN architecture, the Command Fu-

sion arbiter fuses some of its input data. The distinction lies in that the action

generated is not that of a vector sum but instead through a priority-based selection;

what is actually summed is the collection of weights from each behavior. Each behav-

ior weighs all possible relevant commands and then outputs this vector to the arbiter.

The arbiter then takes all of the outputs from each behavior and then sums them in

correspondence to the relevant actuator. The action associated to highest weight is

then passed on to that actuator [22].

Utility Fusion. Utility Fusion was introduced as an alternative to priority-

based arbitration methods. Instead of proposing actions with associated votes, be-

haviors indicate the utility of potential states to the arbiter [23]. To determine the

necessary commands for the actuator(s), the arbiter then combines the utilities fed

into it and attempts to maximize this information to provide an optimal state. This
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arbitration scheme allows for action generation without the need of a World Model,

giving the system running it the capability for more “intelligent decision-making”

[23].

2.2 Middleware

As stated in Section 2.1, Robotic Middleware are what is considered to be the glue

that holds robotic modules together [4]. The interaction between these different soft-

ware and hardware modules is made possible through the variety of services provided

in each middleware suite. In distributed architectures, these services fulfill a critical

role in not only information/data transport but also in portability, reliability, and

complexity management [24]. The usefulness of middleware extends beyond robotic

framework design. In a broader scope Middleware can be categorized into one of

three groups: application-specific, information-exchange, and management/support

[24]. When it comes to picking a middleware suite for a robotic framework there are

a number of options available, unfortunately not all are under active development.

In this section a few of the more widely used and actively developed middleware are

discussed.

2.2.1 Robotic Operating System.

Among the middleware in active development the Robotic Operating System

(ROS) is one of the more widely used for robotics systems due to its extensive doc-

umentation and community support available. Originally developed in 2007 at the

Willow Garage, ROS was created in support of the Stanford Artificial Intelligence

Robot (STAIR). The goal behind the subsequent development for this middleware

was to encourage the reuse of code and collaboration among its users. Although this

middleware itself is not a real-time framework, its strength lies in the large user com-
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munity, making it a powerful tool for research and rapid development. The framework

itself is open-source and functions as a meta-operating system for a robot, provid-

ing all of the tools and services needed for operating a wide variety of robots. The

filesystem design of ROS consists of a distributed framework of processes, or nodes

[25]. These processes are what the community calls packages and stacks. Some of the

tools provided allow for the “obtaining, building, writing, and running of code across

multiple computers”[25].

2.2.2 Google Protocol-Buffers.

Developed by Google internally and then publicly released in 2008 GoogleProtocol-

Buffers, Google Protocol-Buffers was created for the purpose of serializing structured

data. This middleware is language-neutral and platform-neutral allowing it to be

implemented in a variety of different programming languages on an unrestricted set

of platforms. The message structures consist of a simple format in which the user

creates a .proto file that includes the message contents in a user-defined set of struc-

tures. The data in each of these structures consists of a fieldname and a value. This

value can be of either boolean, integer/floating-point number, strings, raw bytes, or

even references to other buffer message types [26]. Optional properties can be defined

for each of these fields allowing the user to specify them as optional, required, and

repeated [26]. This particular middleware is a worthy choice when the user cares for

a simpler structuring of data, smaller/more lightweight messages, and low-latency

messaging.

2.2.3 Lightweight Communication and Marshalling.

Initially developed in the Computer Science and Artificial Intelligence Laboratory

of the Massachusetts Institute of Technology (MIT) in 2009, the Lightweight Com-
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munications and Marshaling (LCM) libraries were created for message passing and

data marshalling [27]. These libraries were originally made with the intent to simplify

the development of low-latency communication between modules. An attractive area

for such application was in the field of robotics where real-time performance can be

highly desired. The features found in the set of LCM libraries are a message passing

system, tools for the logging/playback of message data, tools for “real-time” analy-

sis, and platform/language-independent specification [27]. The messaging system for

data passing consists of a publish/subscribe model in which messages containing user

desired information can be “published” by any system module into a user’s network

and then “subscribed” to by any module on the same network to receive the pub-

lished information. The structuring of these messages is similar to the method used in

Google Protocol-Buffers. These message structures are then saved in .lcm files to be

compiled for use. The toolkit and design allows for the inspection and modification

of messages on the network in the event that performance increase is needed.

Additional Middleware. Some other honorable mentions for middleware

in robotics include but are not limited to the following: CLARAty [28, 29, 30, 31, 32],

OPRoS [33, 34, 35, 36], Orocos [37], Player [38, 39, 40], and YARP [41, 42]; some

of which are no longer in active development [24, 4]. Table 1 [4] compares a few of

these middleware in order to provide some insight on their compatibility with different

operating systems and languages.
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Table 1. Middleware Comparison Table from Robotic Frameworks, Architectures, and
Middleware Comparison[4]
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ROS Unix C++, Python, Lisp ∼ X
HOP Unix, Windows Scheme, Javascript ∼ X X X

Player/Stage/Gazebo Linux, Solaris, BSD C++, Tcl, Java, Python ∼ X
MSRS (MRDS) Windows C# X ∼ X X

ARIA Linux, Win C++, Python, Java X X X
Aseba Linux Aseba X ∼

Carmen Linux C++ X
CLARAty Unix C++ X X
CoolBOT Linux, Win C++ ∼ X X X

ESRP Linux, Win ? X X X
iRobot Aware ? ? X ? ? X ?

Marie Linux C++ X X X
MCA2 Linux, Win32, OS/X C, C++ X X
Miro Linux C++ X X X

MissionLab Linux, Fedora C++ X
MOOS Windows, Linux, OS/X C++ ∼ X X

OpenRAVE Linux, Win C++, Python X X X
OpenRDK Linux, OS/X C++ X X X

OPRoS Linux, Win C++ X
Orca Linux, Win, QNX Neutrino C++ ∼ X X

Orocos Linux, OS/X C++ X
RoboFrame Linux, BSD, Win C++ ? X X X

RT Middleware Linux, Win, CORBA platform C++, Java, Python, Erlang X X X
Pyro Linux, Win, OS/X Python X X
ROCI Win C# X X X X
RSCA ? ? X X X X
ROCK Linux C++ ? X

SmartSoft Linux C++ X X X X
TeamBots Linux, Win Java X X

Urbi (language) Linux, OS/X, Win C++ like X X X X
Webots Win, Linux, OS/X C, C++, Java, Python, Matlab, Urbi X X X X
YARP Win, Linux, OS/X C++ X X
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2.3 Cooperative Localization

Cooperative Localization refers to the process in which multiple systems work

together to help obtain/improve position information about either themselves or a

foreign entity. The purpose behind accomplishing such a task through cooperative

methods revolves around the idea that more perspective results in better estimates for

solutions. Generally when it comes to real-life applications, a higher level of accuracy

greatly benefits operational performance. Unlike human operated systems, robotic

platforms exhibiting autonomy stand to benefit the most from such accuracy due to

the lack of secondary controls being present (human control). In this section some of

the fundamental concepts are provided for two of the more commonly used tools in

cooperative localization: filtering methods and factor graphs [43, 44, 45, 46, 47, 48].

2.3.1 Bayesian Filters.

Among the fundamental filtering methods used in state estimation, the Bayes Fil-

ter stands as one of the most important due to its presence and influence on other

filters. The Bayes filter is a probabilistic approach for estimation that works through

recursion. The filters that are derived from this recursive bayesian estimation ap-

proach all share a common methodology that is present in their predecessor. In short,

the filter works through a sequence of steps in which a prediction is made about a par-

ticular upcoming measurement, using some model about the system. Measurements

are taken and compared to the estimates. At this point, adjustments/updates to the

state are then made. These new adjustments are based off of statistical analysis of

the model itself and of the measurements obtained.

The entire process involved in the Bayes Filter is considered to be Markhov, mean-

ing that at any given point in time the current event depends only on the state ob-

tained in the previous event. This relation implies that the current model can be
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considered to contain historical information about all the previous models. Addi-

tional information regarding Bayesian filtering can be found in [49, 50, 51, 52, 44],

however this thesis primarily utilizes factor graphs for statistical inference.

2.3.2 Factor Graphs.

In 2001, Frank R. Kschischang introduced factors graphs as an approach for deal-

ing with complex functions consisting of many variables [53]. These factor graphs were

bipartite, meaning that they represented global functions as a product of smaller, more

local, functions. These local functions were typically multivariate and a subset of the

total variables present in the global function.

Let a global function be represented by g(x1, ...xn) where the set {x1, ...xn} refers

to the variables present in the model. Due to the bipartite nature of these factor

graphs, this global function can be represented by

g(x1, ..., xn) =
∏
j∈J

fj(Xj) (1)

where fj(Xj) refers to a single factor, or function, consisting of a subset of variables

from the set {x1, ...xn}. To illustrate further, we can represent this graphically as

seen in Figure 5, where variable nodes are represented by xn and factor nodes are

represented by fn.

Figure 5. Factor graph for the product of fA(x1)fB(x2)fC(x1, x2, x3)fD(x3, x4)fE(x3, x5)
from Factor Graphs and the Sum-Product Algorithm [53]
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In short, these factor graphs outline the fundamental relationships between variables

and a set of factors. Inferences can then be made about each factor, allowing the use

of algorithms that work well on trees such as the Bayesian Tree.

The usefulness of factor graphs extends into the world of robotics where perception

plays a critical role, as seen in Section 2.1. Making of inferences about the operating

environment plays a critical role in evaluating the effectiveness of actions. By de-

sign, factor graphs prove to be useful because of how they are structured and their

compatibility with inference-making algorithms. This utility has led to popularity in

mapping algorithms where position information can be represented through variable

nodes and perception through factor nodes in a factor graph. By inferring about the

global function through the use of measurements and tree structures, corrections to

drifting error can be made to not only the current state but all previous states in the

graph as well.

As stated previously, a factor graph corresponds to the factorization of a global

function. Using probability theory, we can express the global function as a probability

density function (PDF). The global function can be factored into the smaller compo-

nents, using (1), with each factor fj(Xj), corresponding to a particular measurement.

By turning this into a maximization problem,

argmaxXj

∏
j

fj(Xj) (2)

the optimal solution for the measurement fj(Xj) can be found by looking for the right

combination of Xj, where Xj represents all of the known vehicle poses and landmarks

in that factor, that maximizes the probability of that particular measurement. Simi-
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larly, if Gaussian noise is assumed, then (2) can be reduced to,

argminXj

∑
j

|hj(Xj)− Zj|2Z (3)

where hj(Xj) represents the predicted measurement according to a generative sen-

sor model, and Zj represents the measurement from the sensor itself. Additionally,

if the assumption is made that the generative model hj(Xj) is linear, and this is

supplemented through frequent linearization, then (3) can be represented as,

argminXj
|AXj − b|2Z (4)

where A is a large matrix with each row containing the variables in Xj that corre-

sponding to a particular factor fj(Xj). Due to the design of the original factor graph,

this matrix A exhibits the properties of a sparse matrix, allowing for the use of more

efficient optimization algorithms. Incremental Smoothing and Mapping (iSAM2) is

one of these algorithms which will be used in the Cooperative Localization piece of

this framework. [52, 54, 55]
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III. Methodology

This chapter reviews the initial architecture design for the proposed Autonomy

Framework. The organizational structure is depicted in Figure 6 and is heavily based

on the Hybrid Architecture for Multiple Robots (HAMR) [56]. For development pur-

poses the framework was built using MATLAB’s R2018a object-oriented programming

environment. The use of MATLAB for the construction of this framework allows for

the application of standard object-oriented design patterns found in other languages

such as C++ and Java™. To validate the principle of peer flexibility in autonomy,

Figure 6. Hybrid Architecture for Multiple Robots [3]

the focus in the framework’s development was for eventual implementation on Multi-

Robot Systems. All modules within the framework communicate with each other via

LCM channels using a publish/subscribe approach [57]. This design allows for the

subscription of a single topic by multiple modules in need of the same information.

In Section 3.1 a breakdown for the internal workings of this HAMR-based frame-

work are laid out. Some expansion on the algorithms used and class definitions are

provided. Section 3.2 discusses the objective for this framework used to help validate
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peer-flexibility. The software packages used and algorithms developed for execution

of this mission are also presented. Lastly, Section 3.2 overviews the experimental

runs used for determining the effectiveness of the framework’s design for Multi-Robot

Systems.

3.1 HAMR

As seen in Figure 6, HAMR builds upon a traditional three layer architecture

through the addition of a Coordinator layer. By abstracting a layer for the interaction

of other agents in a Multi-Robot System, the Deliberator can be left to perform

its high-level tasks [56] without the added complication of handling a multi-agent

environment. This also reduces the communication overhead [58] handled by the

Deliberator due to the streamlining and compartmentalizing of information which

gets communicated in and out of a coordination component in a Multi-Robot System.

In the subsections below the roles assigned to each layer are expanded in addition to

some of the important properties and methods used for their class definitions.

3.1.1 Deliberator.

Like previously stated, the Deliberator layer in this framework is responsible for

performing high-level reasoning tasks. These tasks consist of anything between task

decomposition, task allocation between different agents, and mission planning [56].

Due to the multi-agent nature behind the purpose of this work, some additional re-

quirements are needed for proper deliberation [59, 60], therefore to keep the focus

strictly on multi-vehicle coordination, some of the complexity was taken from this

iteration of the Deliberator. Although the intricacies of the Deliberator were inten-

tionally reduced, the same structure for information flow was kept with respect to

Figure 6 to stay true to the Deliberator’s responsibilities. All of these responsibili-
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ties are accomplished through the provision of state information from the Controller

layer, utilities and messages about the agents relevant to the operating environment

from the Coordinator layer, and mission updates or re-plan requests from the Se-

quencer layer. Using this information the robot is able to take the Mission Intent, or

High-Level objectives, and send plans to the Coordinator for agent cooperation and

the Sequencer for behavior planning.

3.1.2 Controller.

Within the Controller layer of this Autonomy Framework exists a number of

smaller components working together to accomplish physical vehicle actuation. Listed

below are breakdowns of the different components that make up this layer as shown

in Figure 6.

3.1.2.1 Unified Behavior Framework.

In parallel with a modified three-layer architecture, this autonomy framework op-

erates under a behavior-based architecture. Typically, these types of architectures

are lacking in robustness and are better suited for tightly tuned environments [61].

Deviating from such environments requires augmentation to accommodate more func-

tionality. Unfortunately, adding this functionality also impacts control complexity

and results in degraded performance. To circumvent this degraded performance, the

Unified Behavior Framework (UBF) [62] is implemented as a behavior architecture for

the autonomy framework’s controller. Through the use of a composite and strategy

pattern the UBF is able to break down tasks assigned to the controller, make assign-

ments and enable autonomous behaviors [63]. These assigned tasks come from the

Sequencer layer in the form of a Behavior Set, relevant to the current mission plan.

This set is dynamic and can change depending on the relevant behaviors determined
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from the Sequencer. Consequently the changes in the behavior set are low frequency

and only changes when there are updates to the current mission. This design choice

allows the controller to operate under the highest frequency possible with the intent

of real-time operation. Within the UBF, this Behavior Set is then instantiated, al-

lowing for desired states and associated priority values to be passed into the Arbiter

for action selection via the Winner-Take-All method.

There are a couple important class definitions that should be discussed here.

Included below are a few of the class definitions paramount to the framework along

with an associated functional description.

Arbiter . The Arbiter Base Class, or abstract class in MATLAB, represents

a class definition to be used when creating different Arbiter derived classes. In this

particular framework, the Winner-Take-All Arbiter inherits the properties and meth-

ods from this base class and, applies arbitration via priority selection. The derived

Arbiter classes take in an action list with associated priority values and generate a

desired output for the UBF in the form of a desired system state.

UBF . The UBF Class is a Base Class meant for taking the current Be-

havior List provided by the Sequencer and sending a desired state to the Hardware

Abstraction Layer, which is then translated to wheel/motor commands to actuate

the vehicle. The class takes the input Behavior List and instantiates a structure of

Behavior Objects. This structure pulls in the state information required by each in-

dividual behavior to generate a set of actions along with an associated priority vote.

This information is then passed into the Arbiter of choice within the UBF, ultimately

providing the system with an desired state and action. This Behavior List changes

at a low frequency and is only modified when the Sequencer pushes a different list to

the Controller.
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3.1.2.2 State.

The State component of the Controller layer is responsible for handling all state

data that comes from onboard sensors and is necessary for the behaviors to generate

an Action. Instead of building a World Model, this component compartmentalizes

the state data into smaller components ranging from position, velocity, attitude, and

peripheral information to allow for independent updates at independent frequencies.

The intent behind this is to be able to provide only the necessary state information

requested from the different components within the framework at a higher frequency.

3.1.2.3 Perceptors.

The Perceptor component represents the collection of different onboard sensors

and estimation algorithms. Within this framework the perceptors are divided into

two categories: simple perceptors and computationally complex perceptors. The

distinction between the two comes from the individual perceptors impact on the

“real-time” performance of the controller. Devices that provide simple information

such as position, velocity, and attitude are capable of updating the State component

without significant impact towards the latency of Action generation. The category

of Computationally Complex Perceptors refers to algorithms or sensor modules that

provide state information at a low frequency, typically through the processing of

data-intensive algorithms, like image processing, for example.

3.1.2.4 Hardware Abstraction Layer.

The Hardware Abstraction Layer within the Controller represents the component

in the robot that interprets the Actions generated by the UBF and implements them

on the onboard actuators. The Hardware Abstraction Layer will also update the

State component with any sensor or derived information, such as position, attitude,
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and velocity. For the purpose of this framework, the Hardware Abstraction Layer

is embobdied in the Pixhawk2 autopilot. That can be either the software (used in

virtual world) or hardware (real world) version.

3.1.3 Sequencer.

The Sequencer layer of this framework is where the facilitation of task management

between the Deliberator and Controller layers occurs. This layer plays a vital role in

the breaking down of the tasks received from the Deliberator to provide the Controller

with the tools necessary for efficient operation. In addition, the Sequencer also pro-

vides feedback to the Deliberator regarding the status of the agent’s current assigned

task in the event that there is a need for re-planning. This abstraction allows for the

Deliberator and the Controller to operate continuously and asynchronously at their

own frequency with interruptions/updates occurring only when needed. Additionally,

it also removes the need for the Deliberator to be fully aware of the agent’s entire

state, limiting this knowledge exclusively to information critical for High-Level Op-

erational awareness. These responsibilities are accomplished through the Sequencer’s

three internal components: the Behavior Executive, Behavior Planner, and the Be-

havior Library.

3.1.3.1 Behavior Executive.

The Behavior Executive exists on the front end of the Sequencer. This compo-

nent is responsible for handling the interaction between deliberation and operational

control. In this framework, the Behavior Executive takes the generated tasks from

the Deliberator in the form of a messages. These messages allow for the other com-

ponents in the Sequencer to further break down the assinged tasks into a workable

toolkit for the Controller. Once the task received is broken down and interpreted, a
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message structure containing a determined list of Behaviors and their assigned weight

values/functions is passed into the Controller layer for use. The Behavior Executive

is also the component responsible for receiving current state information relating to

the agents operational status in regards to situations such as hardware failure, task

failure, task completion, or any significant change in data [56]. This information

is then either used to produce a new behavior list for the Controller or to request

re-planning from the Deliberator.

3.1.3.2 Behavior Planner.

The Behavior Planner is the component responsible for breaking down the cur-

rently assigned tasks and generating a workable toolkit for the Controller. This tool-

kit consists of a set of behaviors determined to be necessary for operations pertaining

to the assigned task. Additionally, this is where the prioritization of behaviors occurs.

The priority values/functions determined for these behaviors are based on the type

of task at hand. The purpose of this step is to provide the Controller with sufficient

information to allow for proper arbitration in action generation.

3.1.3.3 Behavior Library.

The Behavior Library consists of all the behaviors available to the system. This

component is where the Behavior Planner looks to for determining what tools are

available for generating a tool-kit for the Controller. In this framework, the library

construct itself is represented by a directory and not an actual class definition. This

directory includes all of the behaviors available in the framework as individual class

definitions. By doing this, the library can be dynamic without having to redefine the

entirety of it whenever a new behavior is created for the framework. For this work

the Behavior Library consists of only four behaviors necessary for the particular arbi-
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tration method used: AvoidOthers, FollowObject, FollowPath, and GoToXY.

AvoidOthers. The primary focus of the AvoidOthers behavior is to avoid

collision with team vehicles, unidentified vehicles, and/or other obstacles present in

the environment. Its priority value is defined by a function that relates the current

objects detected within the operating environment and the agent’s current position

and path.

FollowObject. The FollowObject behavior’s primary focus is on the detec-

tion and pursuit of unidentified vehicles within the agent’s Field of View (FOV). This

behavior’s priority value is defined as a static number which is dependent on the

currently assigned mission.

FollowPath. The FollowPath behavior is responsible for generating and ex-

ecuting a patrol path within an area of interest or operating environment. This

behavior’s priority value is static and is not dependent on the currently assigned

mission.

GoToXY. The purpose of the GoToXY behavior is to provide an X-Y co-

ordinate for a location of interest to the agent’s actuators. Like the FollowPath

behavior, it’s priority value is static and is not dependent on the currently assigned

mission.

3.1.4 Coordinator.

Having a layer in Multi Robot Systems that is responsible for the coordination of

all agents available provides this network the ability to retain each of the individual

agent’s capabilities in addition to asynchronous and complementary operation [58].

In this framework the Coordinator layer is what aims to provide such cooperative
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capabilities. Within this layer exist the collaborative features necessary in a network

of robot and/or human systems such as: the formation of teams or coalitions, the

sharing of information of interest, the establishment of trust within the ranks, and

joint tasks such as Cooperative Localization.

Figure 7. Internal Structure of the Coordinator [58]
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In a distributed network of robots where there is no team leader, the Coordinator

layer plays a critical role in assisting joint deliberation due to the differences in each

agent’s capabilities. These differences can range from the physical properties of the

agents in potentially heterogeneous networks to simple operational capabilities due

to being in the right place at the right time. In a centralized network of agents where

there exists a team leader, the Coordinator acts much less as a team deliberation

component like in its distributed counterpart, and instead retains focus on commu-

nication and information sharing among the collective. For this work, a centralized

approach is used to reduce complexity for the network given the particular mission

of interest.

The role of the Coordinator in the Team Leader is to act as the central hub for

task designation among the agents and information collection for the Cooperative

Localization algorithm. In contrast, the Coordinator layers that exists on the rest of

the team members are responsible for receiving tasks from the leader in relation to

the current mission and sharing state information of interest among the network for

Behavior purposes.

To accomplish coalition formation, a broadcast approach is implemented in which

team members entering the operating environment wishing to collaborate with the

Leader must publish a message to a secure channel. This channel is under constant

surveillance from the Leader in order to allow for the addition or removal of agents

from the Team Roster.

3.2 Objective

As stated in Chapter 1.3, to accomplish the goal of validating the principle of

peer flexibility a simple scenario was created. The objective of this scenario is to

demonstrate the ability of the framework to adjust the internal task assignments
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based on the resources available within the operating environment. A simple patrol

scenario was designed where conditions of the environment would have a direct effect

on the behaviors executed by the agents present and on the ad-hoc network. In this

mission an agent(s) is tasked with patrolling a region of interest with the purpose of

discerning whether any foreign entities present are friendlies or potential targets of

interest. If targets of interest are detected and the resources are available, localization

of that target becomes of the utmost priority. To accomplish this, the mission is split

into two simple phases: Patrol and Localize.

1. Patrol: The Patrol phase of this mission consists of the agent(s) patrolling a

designated region of interest through a self-generated path. If multiple agents

on the team are present then the region is distributed among all team members

with each agent being responsible for patrolling exclusively their own designated

zones. Entry of new team members into the environment prompts a redistribu-

tion of zones within the region. The Patrol phase ends and the team proceeds

to the Pursuit phase when ALL of the following conditions are met:

• A Target of interest enters the operating environment

• There exists sufficient team members (three) actively patrolling in the

operating environment

2. Pursuit: The Pursuit phase of this mission consists of the active pursuit and

localization of a target present within the operating environment. This pursuit

is carried out by the three team members to provide necessary information

to the team leader for the Cooperative Localization algorithm of choice. The

Pursuit phase ends and team reverts to the Patrol phase under ANY of the

following conditions:

• The Target of interest exits the operating environment
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• A loss of a vehicle occurs causing the number of capable vehicles for pursuit

to drop below 3

3.2.1 Localization Algorithm.

A Pose Graph Cooperative Localization approach is used to accomplish the lo-

calization piece of the above scenario. Like previously mentioned in Chapter 2.3.2,

Factor Graph approaches are methods which make inferences about the environment

through the use of variables and functions of factors. Making inferences about each

factor in relation to the environment allows for the use of sophisticated algorithms

that work well on Bayesian Trees. A nonlinear optimization method known as iSAM2

is used to implement the localization algorithm in this work [55]. Through the use of

incremental variable re-ordering and frequent re-linearizations, iSAM2 is able to cir-

cumvent restructuring of the entire tree built from the generated Factor Graph. This

approach saves on computation time allowing for a quicker yet high quality Factor

Graph approach in minimizing measurement error.

The Georgia Tech Smoothing and Mapping (GTSAM) library version 3.2.1, which

is the parent librari for iSAM2, is used in conjunction with MATLAB. GTSAM pro-

vides the class definitions necessary for constructing Factor Graphs in MATLAB and

applying optimization algorithms on these objects. Algorithm 11 depicts the a gen-

eral algorithm for applying Cooperative Localization. In the algorithm, G represents

a factor graph object which inherits its class definition from the GTSAM NonLin-

earFactorGraph class. The variables i and targ are to GTSAM key objects which

identify the team members and target respectively. Each team vehicle pose and bear-

ing measurement is defined by iµxy and iµρ while iΣxy and iΣρ corresponds to each

1Vehicle poses are 2D, meaning iµxy(t) = (xpos, ypos, ψ) and iΣxy(t) = diag(σx, σy, σψ) for vehicle
i at time t
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pose and bearing measurement’s covariance matrices:

iΣxy =


iσ2
x 0 0

0 iσ2
y 0

0 0 iσ2
ψ

 iΣρ =i σ2
ρ (5)

Algorithm 1 General Algorithm for Pose Graph Cooperative Localization

1: input: G,O, i, targ, t,i µxy(t),
i Σxy(t),

i µρ(t),
i Σρ(t)

2: output: G
3: // initialize factor graph and optimizer
4: import gtsam.*
5: . import gtsam libraries for use
6: G← NonlinearFactorGraph
7: O ← gtsam.Optimizer(optimizerParams)
8: poseEstimates = V alues
9: . define poses as a gtsam Values object

10: while localization = true do Localization Algorithm
11: // Add factors
12: poseEstimates.insert(i, targ,i µρ(t),

i Σρ(t)))
13: . add estimates
14: G← add(BearingFactor2D(i, targ,i µρ(t),

i Σρ(t)))
15: . add bearing measurements
16: G← add(BetweenFactorPose2(it−1, it,

i µρ(t),
i Σρ(t)))

17: . add odometry measurements
18: // pose graph optimization
19: O ← update(newFactors, newEstimates)
20: return: G,O
21: end while
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3.2.2 Assumptions.

For this experiment, some assumptions are made regarding the sensors and states

of the vehicles to simplify the modeling. Table 2 lists all state variables collected and

their relative information

• All target vehicles are autonomous and move according to a velocity motion

model [64]

• All team vehicles have knowledge of their position at all times. This informa-

tion is represented by an East, North, and Altitude position. Each variable is

characterized by a normal distribution.

• All team vehicles receive attitude information: Roll (φ), Pitch (θ), and Yaw

(ψ). Each variable is characterized by a normal distribution.

• All team vehicles receive velocity information: vx, vy, vz, ωφ, ωθ, ωψ. Each vari-

able is characterized by a normal distribution.

• All team vehicles receive acceleration information: ax, ay, az, αφ, αθ, αψ. Each

variable is characterized by a normal distribution.

• All team vehicles are outfitted with a fixed camera, providing them with a

bearing measurement ρ ∼ N(µρn, σ
2
ρn) when the target exists in the cameras

FOV

• Communication between vehicle nodes (UGV1, UGV2) and central node (UAV1)

is assumed to be in real-time
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Table 2. State Variables

Parent Structure Variables/Factors Characterization Values Units

Position

xn

yn

zn

∼ N


µxn, σ

2
xn

µyn, σ
2
yn

µzn, σ
2
zn


xn

yn

zn

(m)

Attitude

φn

θn

ψn

∼ N


µφn, σ

2
φn

µθn, σ
2
θn

µψn, σ
2
ψn


φn

θn

ψn

(rad)

Velocity

ẋn

ẏn

żn

φ̇n

θ̇n

ψ̇n

∼ N



µẋn, σ
2
ẋn

µẏn, σ
2
ẏn

µżn, σ
2
żn

µφ̇n, σ
2
φ̇n

µθ̇n, σ
2
θ̇n

µψ̇n, σ
2
ψ̇n



ẋn

ẏn

żn

φ̇n

θ̇n

ψ̇n

(m/s)

(rad/s)

Acceleration

ẍn

ÿn

z̈n

φ̈n

θ̈n

ψ̈n

∼ N



µẍn, σ
2
ẍn

µÿn, σ
2
ÿn

µz̈n, σ
2
z̈n

µφ̈n, σ
2
φ̈n

µθ̈n, σ
2
θ̈n

µψ̈n, σ
2
ψ̈n



ẍn

ÿn

z̈n

φ̈n

θ̈n

ψ̈n

(m/s2)

(rad/s2)

Measurement ρn ∼ N(µρn, σ
2
ρn) ρn (rad)

3.2.2.1 Target Position Estimate.

2 Estimates about the target’s position need to be populated as factors into the

Factor Graph being generated for the Cooperative Localization Algorithm to function.

2x=(East-Position, North-Position,Vehicle Orientation w respect to the North Axis)T
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A generic triangulation method will be used. For simplicity, the factors being collected

will carry no altitude measurement and instead only a 2-D space representing the East

(x), North (y) coordinates of an NED (North, East, Down) coordinate system. Their

motion will be modeled using the following equations for the velocity motion model

[64] 
E ′

N ′

ψ′

 =


E

N

ψ

+


− vt
ωt

sin(ψ) + vt
ψt

sin(ψ + ωψt∆t)

vt
ωt

cos(ψ)− vt
ψt

cos(ψ + ωψt∆t)

ωψt∆t

 (6)

The pose of the vehicles at time t is represented by x = (E,N, ψ) while x′ =

(E ′, N ′, ψ′)T corresponds to the pose of the vehicles at time t + ∆t. The input into

the system is ut = (vt, ωψt)
T where vt and ωψt are the vehicle velocity and angular

velocity at time t.

Given that each team vehicle is outfitted with camera, GPS, and odometry sensors

we can model the initial estimate for the Target Vehicle’s position using the following

model.

poseuav1 =

[
E1, N1, ψ1

]T
poseugv1 =

[
E2, N2, ψ2

]T
poseugv2 =

[
E3, N3, ψ3

]T
(7)

ET =

E1 +R1 ∗ sin(ρ1)

E2 +R2 ∗ sin(ρ2)

E3 +R3 ∗ sin(ρ3)

NT =

N1 +R1 ∗ cos(ρ1)

N2 +R2 ∗ cos(ρ2)

N3 +R3 ∗ cos(ρ3)

(8)

3 Setting this problem up as a system of linear equations

b = Ax (9)

3Recall ρn = bearing measurement to target vehicle with respect to vehicle n
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b =

[
E1, E2, E3, N1, N2, N3

]T

A =



0 1 − sin(ρ1) 0 0

0 1 0 − sin(ρ2) 0

0 1 0 0 − sin(ρ2)

1 0 − cos(ρ1) 0 0

1 0 0 − cos(ρ2) 0

1 0 0 0 − cos(ρ3)


x =

[
ET , NT , R1, R2, R3

]T
Then rearranging (9) into

x = A\b (10)

yields an estimate for the target’s position (ET , NT ) in addition to distances (R1, R2, R3)

between the target and each vehicle node (10).

3.3 Limitations

Due to the requirements of the Cooperative Localization algorithm, some esti-

mates need to be included as factors within the built graph. The model in the

previous section serves as the chosen method to obtain an estimate on the target’s

location. In order for a solution of an estimate to exist, there must be at least three

vehicles with visibility on the target. Additionally, the target must also exist within

the polygon footprint of the team members. Without these criteria being met, a

proper estimate cannot be generated resulting in a missing factor within the graph.

This missing factor implicates the optimization algorithm’s ability to produce a viable
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position fix on the target.

3.4 Summary

Through the use of Object Oriented design patterns, the components listed in

Section 3.1 can be designed in such a way where the class methods meet the respon-

sibility requirements within the framework. Additionally, defining class properties

relevant to the information used within each component allows for both component

interoperability and user interface. Robustness is highly desired within each com-

ponent therefore a rapid development environment with a large support base such

as MATLAB proves useful. Through the use of this IDE the testing of each com-

ponent in an isolated environment becomes easier to accomplish. Lastly, the use of

LCM allows for packet analysis through the lcm-spy inspection utility. These fea-

tures used/implemented allow for better observation of the framework’s performance

during the joint task of Cooperative Localization in this mission set.
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IV. Results

This chapter presents qualitative analysis on the design approach. Instead of

performing a comparison of custom benchmarks between this architecture and an

alternate, performance of individual components are discussed; demonstrating func-

tionality of the intended design. This analysis addresses developed methods within

each component and how they satisfy the component’s objective within the mission

and the overall framework. Additionally, the constraints and oversight behind the de-

sign and how they impact desired robustness are commented on. Section 4.1 discusses

the issues encountered with the communication framework used and how they impli-

cated the original experiment in regard to the simulation design. Section 4.2 presents

the Deliberator’s performance under its assigned tasks within the scope of the mission

set. Analysis of this component focuses heavily on the ability to communicate with

the Sequencer and Coordinator during changes in mission phases. The Sequencer

component is discussed in Section 4.3. Highlighted in this discussion are the roles of

the internal layers and how they satisfy the responsibilities of the component within

the framework. In Section 4.4, the Coordinator performance with respect to coalition

formation and joint semiosis is presented. Section 4.5 discusses the Controller compo-

nent. This section focuses primarily on the Unified Behavior Framework. Described

here are action generation relative to the mission set. Lastly, Section 4.7 presents

the performance of the pose graph localization algorithm. Additionally, simulation

properties and model assumptions are presented in tables within this section.

4.1 Component Communication

The components making up the framework consist of a number of classes, some of

which operate at their own frequency. To achieve a simulation for this experiment on
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one computer, a parallel process needs to run for each component in the framework of

each vehicle (three total). LCM 2.2.3 would allow for these processes to run individu-

ally, while providing a communication layer between each component. Unfortunately,

issues were encountered with the compatibility of LCM and MATLAB.

To transport data through LCM, a message containing the data is compartmentalized

and published to a particular topic name. Any process that wishes to receive this in-

formation must know both the topic name and the content/organizational structure

of the message to be able receive it properly. Then the subscriber must subscribe

to the topic name and receive-push the messages to an aggregator. This aggrega-

tor holds a queue of these messages and with the proper commands can pop out

individual messages in sequential order. In MATLAB there appears to be an issue

between the publishing and receiving of messages into the aaggregator. Problems

were encountered when multiple messages with different topic names were published

simultaneously prior to their aggregating on the subscriber end. The aggregator

would receive empty messages into its queue even if the lcm-spy utility detected valid

messages on the particular topic as being broadcasted. Because of this issue, the

simulation for the frameworks in MATLAB needed to be designed on one file without

LCM. To push information into the proper containers a sequential approach needed

to be used. This constrained the operation of the framework to exist on a single loop

for all components. In the future, development of the framework should be completed

in a language that permits callbacks and threaded operations; allowing the design to

proceed as intended.

4.2 Deliberator

Recalling Section 3.1.1, the role of the Deliberator is to perform high level rea-

soning tasks. To simplify the problem and constrain the scope to the principle of
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peer flexibility, deliberation in this framework was limited to communicating critical

information such as the operating area and desired position solutions for the GoToXY

behavior with the network of vehicles. These parameters are decided by the current

mission set and as such were deemed necessary to exist in the Deliberator component.

To further streamline sharing of this information, the Deliberator component would

share its parameters with a Deliberator state container for simplified referencing both

within the vehicle framework and network. To generate a Desired Position, relevant

to the GoToXY position, a few requirements must be met:

• Current mission phase must be under Pursuit

• Three team members need to have visibility on the target

• An estimate for the Target vehicle position must be generated

Due to time constraints and the stage of development, the simulation could never

meet these conditions therefore no Desired Position could be generated. As a result,

simulations in Section 4.6 does not include a simulation for the GoToXY behavior.

4.3 Sequencer

The plans from the Deliberator are used by the Sequencer to build a toolkit (set

of behaviors) for the controller to use to accomplish the current mission. For this

simulation, the Sequencer was solely responsible for passing a list of behavior names

to the controller. This list was transported through LCM and received by the UBF for

placement into an aggregator. This component was able to search through its library

of behaviors, construct a list, and publish the behaviors with associated priorities (e.g.

behavior priorities). This allowed the UBF to instantiate these behavior objects in a

structure with defined priority votes. Within the Sequencer, the Behavior Planner is

responsible for associating the current plan with the behaviors available within the
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library. In this simulation, the planning consisted of pulling all behaviors available and

storing them into this list with some preset priority values. No additional planning

was made. Additionally, no feedback was provided to the Deliberator component

for any replan requests. In future work, we aim to demonstrate the use of the state

container, populated with a desired futures state, as the appropriate means of sharing

plans between the Deliberator and Sequencer.

4.4 Coordinator

The responsibilities of the Coordinator within the framework encompass any in-

formation necessary for cooperative functionality between ultiple team members. In

this experiment, the design of the Coordinator was limited to forming a team coali-

tion and the passing of useful data among agents associated as team members. In

this implementation, a centralized approach to cooperative work was chosen, where

the agent UAV1 was defined as the central node of the vehicle network. This assign-

ment meant that when it came to the task of cooperative localization and generation

of desired states for the GoToXY behavior, UAV1 was responsible for handing out

assignments to the other team members. The design choice was due to UAV1 being

the only air vehicle in the network, and therefore having the best visibility over the

operating area.

A team is constructed by requiring every friendly vehicle entering the operating area

to broadcast a message including their vehicle ID as a string through an LCM channel

within the local network. The central node then listens to this channel and updates

the team list accordingly as new friendlies enter. Unfortunately due to the shortcom-

ings of LCM compatibility with MATLAB described in Section 4.1, team construction

could not be implemented through Coordinator methods but instead was allocated

directly into the Coordinator. This same shortcoming applied to the writing of rel-
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evant team agent information such as position, attitude, and measurements into the

coordinator class. This information was shared with a Coordinator State on each ve-

hicle to be accessed by the vehicles themselves for certain algorithms, such as collision

sensing and the PathFollow behavior.

4.5 Controller

4.5.1 UBF.

Action generation is handled by the Unified Behavior Framework class. Existing

within the Unified Behavior Framework are instances of other classes such as the

Arbiter, StateContainer, Behaviors, and Actions. The UBF receives a list of Behaviors

from the Sequencer through an LCM channel and instantiates the said behaviors in

an array of objects. Using information from each behavior in this array, the Unified

Behavior Framework class handles the construction of a State Container to be used

exclusively in this class. The establishing of this container streamlines the inputs

for arbitration during action generation. Normally, this construction would occur

through the use of callbacks in LCM but, due to the compatibility issue the container

was constructed and updated manually. Arbiter construction was also added as a

method within the framework allowing for the instantiation of different arbiter types

for use as the primary arbitration technique during the action generation. Generating

an action consisted of passing in the constructed State Container into the arbiter for

action generation and selection.

4.5.2 State.

The most novel contribution of this work is the concept of associating particu-

lar states within the behaviors themselves. This design practiced polymorphism for

categorizing state information. Behaviors and other major components within the
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framework benefit from the compartmentilization of state information into practi-

cal categories in the more streamlined design. Establishing the relationship between

behaviors and states allows for a more practical approach in design/implementation

of new behaviors and perceptor techniques. New behavior design is facilitated by

endowing each with knowledge of required states and what categories to search for

when establishing objects and applying methods. This design approach allowed the

behaviors in the behavior list to report to the Unified Behavior Framework class their

necessary containers for action generation. The UBF class then used this information

for container construction. This same relationship can and was extended to the other

layers within the framework for more practical referencing. Examples of this are the

Deliberator (4.2), Coordinator (4.4), and Sequencer (4.3) states mentioned above.

4.5.3 Hardware Abstraction.

A method for interpreting the output of the arbiter and moving the vehicles was

needed. To emulate an autopilot, we decided on waypoints/desired positions as ac-

tion outputs. This hardware abstraction layer takes the output of the Arbiter/UBF,

pulls from the necessary state containers, and uses Proportional-Derivative control to

generate speed and angular velocity outputs to be used in a velocity motion model.

The vehicle was then actuated and the output states were written to the respective

state containers.

4.6 Behavior Simulation

To demonstrate the framework’s ability to generate actions under changing envi-

ronmental conditions a few simulations are presented below. Like previously men-

tioned in Section 4.2, due to time constraints a mDesiredPosition from the Deliberator

class could not be generated. This property is a requirement for the cooperative lo-
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calization algorithm and as such an input for the GoToXY behavior. As a result, the

only simulations presented are that of the FollowPath (4.6.1), AvoidOthers (4.6.2),

and FollowObject (4.6.3) behaviors. In each figure corresponding to the simulations

there exists a few vehicle attributes:

• Each vehicle and its attributes are identifiable by a constant color.

• The heading and field of view for each vehicle is depicted through two segments.

The smaller angle between each segment represents this field of view which is

bisected by the vehicles current heading.

• The area of interest for each vehicle is defined as the enclosed area within a

polygon. The vertices of this polygon are depicted as diamonds.

• A collision bubble corresponding to each vehicle is identifiable through a dotted

circle centered on the corresponding vehicle’s position.

4.6.1 FollowPath.

The purpose of this simulation is to demonstrate the FollowPath behavior’s ability

to accomplish two things:

• Generate an area of interest for a vehicle within a defined Operating Area

• Generate a set of waypoints within this area of interest for patrolling

Table 3 presents the definitions made to each class for this simulation. Because we

want to illustrate the vehicle’s ability to define an area of interest and remain inside

it for patrolling purposes, the priority values for every other behavior are set as 0.

This allows for the WinnerTakeAll arbiter to always select the action generated by

the FollowPath behavior.

48



Table 3. FollowPath Simulation Definitions

Behavior Class Property Value

AvoidOthers mPriority 0

GoToXY mPriority 0

FollowObject mPriority 0

FollowPath mPriority 0.25

Figure 8 illustrates the environmental conditions at the beginning of this sim-

ulation. The area of interest for each vehicle is generated through the FollowPath

behavior by defining a cluster center and then dividing the Operating Area relative

to this cluster center. The objective for the vehicle beyond this point is to initiate a

patrol sequence in which its operating area is scanned for any signs of vehicles/ob-

jects not identified as team members. Due to the class definitions assigned for this

particular simulation, the vehicle will continue to patrol even when a target of interest

is identified by its perceptor. In Figure 9 we can see that even after the Target has

exited the Operating Area, the vehicles continue to patrol their assigned sector.
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Figure 8. Starting conditions for FollowPath behavior simulation.

Figure 9. End of simulation for FollowPath behavior. Vehicles continue to patrol in

their assigned sectors.
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4.6.2 AvoidOthers.

The purpose of this simulation is to demonstrate the AvoidOthers behavior’s abil-

ity to evade a collision scenario for a vehicle. To accomplish this, the AvoidOthers

behavior requires a collision bubble radius which is defined and then inherited by a

collision prevention perceptor. If an object exists inside this defined radius then the

priority value for this behavior becomes 1. This prompts the WinnerTakeAll arbiter

to select the action generated by the AvoidOthers behavior. The class definitions

required for this demonstration are presented in Table 4.

Table 4. AvoidOthers Simulation Definitions

Behavior Class Property Value

AvoidOthers
mPriority

mBubbleRadius

[0, 1]

100m

GoToXY mPriority 0

FollowObject mPriority 0

FollowPath mPriority 0.25

Illustrated in Figure 10 are the initial environmental conditions for the simulation

of this behavior. From the start we can see that an object/obstacle (Target) exists

within the defined collision bubble of UGV2. According to its FollowPath behavior,

the vehicle should initially head to the top right corner of its assigned sector but will

choose not to because of an object existing within its collision radius. Additionally,

due to the class definitions for this experiment the vehicle will also avoid pursuit. Its

primary objective in this scenario will be to avoid collision and then resume patrol of

its sector.
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Figure 10. Starting conditions for AvoidOthers behavior simulation. Object exists

inside collision bubble radius. UGV2 ’s first waypoint for FollowPath behavior is top

right corner.

Depicted in Figure 11 is UGV2 ’s reaction to the detection of an object inside

its collision radius. It abandons the FollowPath behavior’s waypoint and adjusts

its heading to drive itself in a direction to avoid collision. Upon successful evasion

(Figure 12), it then reverts to its FollowPath behavior (Figure 13).
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Figure 11. Reaction of AvoidOthers behavior when object exists inside collision bubble.

Figure 12. UGV2 successfully evades collision.
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Figure 13. UGV2 resumes FollowPath behavior after collision evasion.

4.6.3 FollowObject.

When simulating the FollowObject behavior it is important to demonstrate its

ability to abandon all behaviors and engage in a pursuit of the Target vehicle. This is

necessary for the eventual localization phase of the defined mission. To do this Table

5 presents the class definitions necessary for this experiment. In the event that an

unidentified object enters the field of view a team vehicle, the FollowObject behav-

ior’s action priority supersedes all other defined behavior actions. This condition is

enabled by the reception of a camera perceptor’s bearing measurement. This mea-

surement is provided as an input to the FollowPath behavior which is then used in

conjunction with its mDesiredRange property to generate a waypoint in the direction

of said bearing.
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Table 5. FollowObject Simulation Definitions

Behavior Class Property Value

AvoidOthers
mPriority

mBubbleRadius

[0, 1]

100m

GoToXY mPriority 0

FollowObject
mPriority

mDesiredRange

[0, 0.75]

500m

FollowPath mPriority 0.25

Illustrated in Figure 14 is a scenario in which a Target exists in the defined Op-

erating Area. Initially, UGV1 is the only vehicle with visibility on the Target. As

the simulation continues, UGV1 eventually loses sight of the Target while UAV1

and UGV2 gain visibility of it. Figure 15 illustrates UGV1 patrolling its sector

while UAV1 returns to its FollowPath behavior due to loss of sight on the Target

and UGV2 continues its pursuit outside of the Operating Area. Under ideal simu-

lation conditions, the GoToXY behavior would then engage prompting all vehicles

to continue pursuit cooperatively. Unfortunately, due to time constraints this is not

demonstrated.
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Figure 14. Starting conditions for FollowObject behavior simulation.

Figure 15. UAV1 has lost sight of Target and resumes FollowPath behavior. UGV2

continues to pursue FollowObject behavior.
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4.7 Cooperative Localization

The Cooperative Localization algorithm exists as a class to be used within the

coordinator/coordinatorState container. The solution, like mentioned above is pro-

vided to an algorithm that is then used to write a desired position to the Deliberator

and the appropriate state container. Due to time constraints, the class could not

be implemented. However some plots below represent solutions from the proposed

approach, only using a batch method called the Levenberg–Marquardt optimization

technique. The figures demonstrate that the proposed approach is valid and can pro-

vide a solution, yet the computation complexity grows quickly with the graph size

and would not be valid for real-time scenarios. Future work is to implement the same

approach with the iSAM2 library, which only optimizes over the most recent portions

of the graph, allowing real-time computations.

4.7.1 Control Variables.

Table 6 contains the variables that will control the vehicles to simulate the system

over time. Both Target Vehicle and Team vehicles will follow the velocity motion

(6) with each input being a random variable with a uniform distribution within an

certain range.

• vi denotes the input speed of the vehicle in m/s

• ωi denotes the input angular velocity in rad/sec

4.7.2 Response Variables.

Estimating the location of a target vehicle using this pose graph localization ap-

proach requires initial estimates of the target’s pose for the algorithms optimization

method. To solve for these estimates, the Response Variables listed in Table 7 will be
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Table 6. Control Variables
Variable/Factor Normal Operating Level and Range Proposed Setting Relationship to Response Variables (Predicted Effect)

vtarg 10 : 25(m/s) vtarg ∼ N(20, 5) (6)
ωtarg

−π
2

: π
2
(rad/s) ωtarg ∼ N(0, π

2
) (6)

vuav1 10 : 25(m/s) vuav1 ∼ N(20, 5) (6)
ωuav1

−π
2

: π
2
(rad/s) ωuav1 ∼ N(0, π

2
) (6)

vugv1 10 : 25(m/s) vugv1 ∼ N(20, 5)) (6)
ωugv1

−π
2

: π
2
(rad/s) ωugv1 ∼ N(0, π

2
) (6)

vugv2 10 : 25(m/s) vugv2 ∼ N(20, 5) (6)
ωugv2

−π
2

: π
2
(rad/s) ωugv2 ∼ N(0, π

2
) (6)

used in conjunction with (9). This equation requires that a minimum of two nodes

must have visibility on the target at all times. Therefore as stated in Section 3.2.2,

we will assume all three vehicles have lag-less communication and constant visibility

on the target to simplify the simulated environment during the Pursuit phase.

• Team Vehicle Pose is denoted as (En, Nn, ψn), with En and Nn corresponding

to the East and North coordinate the vehicle in the NED-Frame. ψn represents

the vehicle’s Northern bearing with respect to the North Axis.

• Target Vehicle Location is denoted as (Etarg, Ntarg) with Etarg and Ntarg

corresponding to the East and North coordinate the vehicle in the NED-Frame.

• Bearing to Target Vehicle with respect to the Vehicle n’s Northern Axis is

denoted by ρn

Table 7. Response Variables
Response Variable Normal Operating Level and Range Measurement Precision and Accuracy Relationship to Objective

Euav1 ∞ E1 ∼ N(µN1, σ
2
N1) Etarg = E1 +R1sin(ρ1)

Nuav1 ∞ N1 ∼ N(µE1, σ
2
E1) Ntarg = N1 +R1sin(ρ1)

ψuav1 0− 2π ψ1 ∼ N(µψ1 , σ
2
ψ1

) ρ1 = atan2(Ntarg −N1, Etarg − E1)− ψ1

Eugv1 ∞ E2 ∼ N(µN2, σ
2
N2) Etarg = E2 +R2sin(ρ2)

Nugv1 ∞ N2 ∼ N(µE2, σ
2
E2) Ntarg = N2 +R2sin(ρ2)

ψugv1 0− 2π ψ2 ∼ N(µψ2 , σ
2
ψ2

) ρ2 = atan2(Ntarg −N2, Etarg − E2)− ψ1

Eugv2 ∞ E3 ∼ N(µN3, σ
2
N3) Etarg = E3 +R3sin(ρ3)

Nugv2 ∞ N3 ∼ N(µE3, σ
2
E3) Ntarg = N3 +R3sin(ρ3)

ψugv2 0− 2π ψ3 ∼ N(µψ3 , σ
2
ψ3

) ρ3 = atan2(Ntarg −N3, Etarg − E3)− ψ1
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4.7.3 Constant Factors.

In this experiment there are a few factors that must remain constant in order to

keep data integrity. These factors are also help constrain the scope of what is being

analyzed. Table 8 summarizes these factors.

Table 8. Constant Factors
Variable/Factor Desired Experimental Level Measurement Precision Relationship to Response Variables (Predicted Effect)

Vehicles in Operating Space 3 N/A (10)
Mobility Model Velocity Motion σv = 0, σω = 0 (6)

GPS Signal Integrity N-E-D Local Level Coordinate Frame Table 7 Table 7
Camera Quality 85◦ FOV σv = 1◦, σω = 1◦ ψn = atan2(Ntarg −Nn, Etarg − En)− ρ

Transmit Latency ∼ 0 sec N/A Needed ∼0 possible to constrain solution for target position

Figure 16 depicts the computation time for the algorithm, and shows easily why

the iSAM2 approach is a more desireable due to its factorization of the local factors

instead of the whole graph. This would result in a quicker computation time and a

much flatter curve.
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Figure 16. Computation time for pose graph Cooperative Localization algorithm over

time using Levenberg–Marquardt optimizer.

Figure 17, demonstrates that the approach is valid and can produce an estimate

of the target position, given sufficient number of bearings from the team members.

Please note that the noise was removed from the system for validation purposes.

There was not time available to add the uncertainty back in.
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Figure 17. Noise-less Position of Target over time with applied Cooperative Localiza-

tion algorithm; Levenberg–Marquardt Optimizer.
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V. Conclusion

The research provided in this document presents the development towards a

testing platform for autonomy. The framework developed uses the object oriented

programming environment available through MATLAB due to its similarities with

Java™and C++. Additionally, MATLAB’s documentation and debugging tools facil-

itated the development process. To test its functionality and evaluate the principle of

peer flexibility in autonomy the framework was instantiated on three vehicles tasked

with the responsibility of working cooperatively to patrol a predefined Operating Area

and localize any non-friendly vehicles that enter. To accomplish this each vehicle is

outfitted with perceptors that aid in obtaining bearing information on vehicles in

their line of sight and collision prevention. The information obtained through these

perceptors are used in conjunction with GPS and INS data to enable their behavior

based control.

5.1 Summary

Due to constraints with development time not all behaviors were fully tested there-

fore a localization phase for this experiment could never be attempted. Fortunately, a

general algorithm for a pose graph cooperative localization approach was tested and

demonstrated using the GTSAM 3.2.1 library. The Levenberg–Marquardt optimiza-

tion technique used in this localization test revealed that a quicker algorithm such as

the iSAM2 is desired for practical performance. Although tests for the Unified Behav-

ior Framework and a localization algorithm were demonstrated independently, a few

deliberate oversights needed to be made in order to reach this stage of development,

which are discussed in Chapter III.
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5.2 Contribution

The state component of this framework is essential for effective framework oper-

ation. By design, the state component stores the dynamic information critical for

decision making within the platform. Previous work on HAMR and the UBF used

a World Model approach where any time a component needed information about its

environment it would be passed in a reference to this model. In order to establish a

pattern for design we found that compartmentalization of this World Model facilitated

behavior design. If during the design process for a behavior it was given knowledge

of the states required and how to find them, then modularity in behavior implemen-

tation across different vehicle platforms could be more easily achieved. This relation

could also be extended to the different layers within the framework which use and

store unique state information. In this work, the compartmentalization of this World

Model consists of the following state containers: PositionState, AttitudeState, Veloc-

ityState, AccelerationState, PerceptorState, DeliberatorState, SequencerState, and a

CoordinatorState. Each container consists of information relevant to its name so that

any time a component or a function needs to access specific information it looks to the

parent container for availability. If the information is present then it can be pulled,

if it is not then it simplifies the process of determining what information within that

category is available. This organizational structure facilitates access to information

that can be represented in different ways such as position data, which can be ex-

pressed in different coordinate frames. Additionally, within the controller layer the

UBF could construct a container consisting of state information relevant only to the

behaviors within its behaviorList as opposed to passing in a reference to the entire

World Model.
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5.3 Final Remarks

Ultimately, this work presents some developmental insight on the shortcomings of

previous implementations for this framework. It addresses some of the obstacles en-

countered in the early stages of development for this platform and provides a general

starting point for a robust end product. Fundamentally, the design of the framework

shown in Figure 6 exhibits properties of the desired testing platform discussed in Sec-

tion 1.3. Although MATLAB proves to be a useful environment for the conceptual

implementation of a single framework, simulation of multiple frameworks working co-

operatively ideally should be done outside of this chosen design environment. Further

refinement of each component pertaining to each layer of the framework is needed to

address the deliberate oversights made in this work.
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